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Isomerization dynamics in solutionf 

by BIMAN BAGCHI 

Solid State and Structural Chemistry Unit, 
Indian Institute of Science, Bangalore 560012, India 

Recent advances in the dynamics of photochemical isomerization reactions in 
solution are reviewed. The isomerization reactions in solution show diverse 
behaviour depending on the nature of the solvent, the viscosity of the solution and 
the sharpness of the activation barrier. The results of recent time-resolved 
spectroscopic measurements on several isomerizing molecules in different solvents 
are discussed. The rate constants of these isomerization reactions lie in the 
picosecond regime. We briefly discuss the stochastic, Markovian theories of 
chemical kinetics in solution, including the well known Kramers’ theory. Contrary 
to the traditional belief, recent experiments reveal an apparent breakdown of 
Kramers’ theory at large viscosities. This breakdown is most dramatic for 
isomerizing molecules with sharp barriers. The failure of Kramers’ theory for these 
cases can be traced to the assumption that the solvent forces on reactive motion are 
delta-correlated in time. We discuss the recent generalization of Kramers’ theory by 
Grote and Hynes who removed the white-noise assumption of Kramers’ theory by 
including the frequency dependence of friction. This generalized theory can 
qualitatively explain the new experimental data. We also review both experimental 
and theoretical studies on isomerization reactions in the absence of an activation 
barrier. We discuss why the earlier theory of Forster and Hoffmann is inconsistent, 
and review the recent theory of Bagchi, Fleming and Oxtoby on isomerization in 
solution in the absence of a barrier. We also discuss the importance of non- 
equilibrium solvation dynamics on fast isomerization reactions in solution. Recent 
computer simulation studies are reviewed. Lastly, we discuss the outstanding 
problems of this field for future work. 

1. Introduction 
Isomerization reactions in solution constitute an important class of reactions of 

liquid phase chemistry. And, justifiably, this field is currently enjoying tremendous 
attention from both the experimentalists and the theoreticians alike. The rapid growth 
in the experimental research in this field has been fuelled by technological break- 
throughs in the generation of ultra-short laser pulses. As a result, it  is now possible to 
study the dynamics of fast reactions with rate constants in the picosecond or even in the 
subpicosecond regime by time-resolved spectroscopy (Shank et al. 1982, Fleming et al. 
1982, Hochstrasser 1980). The new experimental results have shown the inadequacy of 
some of the earlier theories and have posed serious challenges to the theoreticians. 

On the theoretical side, the advance has been less spectacular. The main difficulty 
for theoretical studies is that in solution the reacting system is usually strongly coupled 
to the solvent degrees of freedom. This makes a chemical reaction in solution a 
dynamical problem of many degrees of freedom. The influence of solvent on a 
isomerization reaction can be broadly divided into two groups. Firstly, the solvent 
modifies the reaction potential surface of the isolated molecule. In some cases this 

f Contribution number 302 from the Solid State and Structural Chemistry Unit. 
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2 B. Bagchi 

solvent effect is so strong that it is meaningless to talk of a ‘molecular’ potential surface. 
Theoretical treatment of this aspect of solvent effect is usually by using the methods of 
equilibrium statistical mechanics developed by Chandler and by others (Hansen and 
McDonald 1976, Chandler 1982). Secondly, solvent dynamics profoundly influences 
the rate of an isomerization reaction. The best-known manifestation of this solvent 
effect is the viscosity dependence of the rate. Theoretical analysis of the dynamical 
solvent effect is based on the methods of time-dependent statistical mechanics, 
developed by Kubo (1966), Mori (1965) and Zwanzig (1961) in the early sixties. 

In this article we review only those isomerization reactions which involve large- 
amplitude motion of a bulky group, twisting or rotating around a molecular axis. A 
schematic representative of such a reaction is given in figure 1, where R and R are bulky 
groups, usually phenyls or substituted phenyls. The reactive motion is a twist around 
the C-C axis, as shown by an arrow in figure 1. The reaction coordinate is the dihedral 
angle between the two planes containing CHR’ and CHR moieties. A schematic 
representation of the molecular potential surface projected along the reaction 
coordinate is shown in figure 2. In this particular figure, the reactive motion involves 
the crossing of an activation barrier. However, in some cases isomerization is known to 
occur in the absence of a barrier. We refer to this case as zero barrier reaction. 

The most widely studied aspect of the isomerization reactions in solution is the 
viscosity dependence of the rate constants. In this article we shall review this aspect at 
length. The isomerizing molecules show diverse behaviour in solution and it is 
convenient to adopt a classification scheme , to systematize the discussion. The 
classification can be based on the height of the activation barrier and the viscosity 
dependence of the reaction. Such a classification of isomerization reactions is shown in 
table 1. In this table, a high barrier means an activation energy barrier that is larger 
than or equal to 5k,T, where k,  is the Boltzmann constant and T the temperature. Zero 
barrier implies a barrier height much less than k,T. The significance of the rest of the 
terms will be made clear (if they are not already obvious) in the next sections. 

R\ /R 
H 

H H /c=c\ H 

‘.+< - 
/ 

R‘ 
Figure 1. A schematic representation of a ~ r a n ~ c i s  isomerization reaction. The reactive 

motion is a twist around the C-C axis, shown by an arrow in the figure. 

Reaction Coordinate 

projected along the reaction coordinate. 
Figure 2. A schematic representation of a one-dimensional molecular potential surface 
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Isomerization dynamics in solution 3 

Table 1. Classification of isomerization reactions in solution. 
I 

High barrier 
I 

I 
Zero barrier 

I 
r I ’ 

Large viscosity 
I 

Small viscosity Large Small I viscosity viscosity 
m 

Markovian Non-Markovian Turn-over Energy controlled 
limit limit behaviour regime 

Table 2. Summary of experimental data on isomerizing systems. 

Isomerizing 
molecule 

Activation energy 
Solvent (in kcal/mole) Classification 

Diphenyl butadiene 
(DPB) 
(Excited state) 

Alkanes 4-7t High barrier, 
non-Markovian 

DODCI 
(Dye molecule) 

Stilbene 
(Excited state) 

TPM dyes 
(Ethyl violet, 
Crystal violet) 
(Excited state) 

Alcohols 

Alcohols 

Alkanes 

Alcohols 

Higher alcohols 
(C8rClJ 

Lower alcohols 
(C,-C,) 

0.51 

13.58 
(ground state) 

(excited state) 
5.48 

3.5 II 

<< 17 

3.4tt 

Zero barrier, 
large viscosity 

High barrier, 
non-Markovian 

High barrier, 
non-Markovian 
Zero barrier, 
large viscosity 

High barrier, 
turnover behaviour 
at low viscosity 

Zero barrier, 
large viscosity 

t Velsko and Fleming (1982). 
$ Keery and Fleming (1983). 
8Velsko et al. (1983). 
11 Rothen berger et al. (1983). 
7 Sundstrom and Gillbro (1984 c). 
tt Sundstrom and Gillbro (1984 b). 

In table 2 we have collected the available experimental informations on those 
isomerizing systems which have been studied in recent years. We have indicated the 
classification, according to table 1, wherever possible. One striking feature that comes 
out from table 2 is that the activation energy is strongly solvent dependent. 

The organization of the article is as follows. In Section 2 we have reviewed the 
traditional, Markovian stochastic theories of chemical reactions in solution. In Section 
3, we discuss the recent experimental results on the systems collected in table 2. In 
Section 4, we discuss the memory efects on isomerization reactions in solution. In 
Section 5, we consider isomerization in the absence of an activation barrier (the zero 
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4 B. Bagchi 

barrier case). In Section 6, we discuss equilibrium solvent effects and in Section 7, the 
effects of non-equilibrium solvation dynamics. Section 8 reviews recent computer 
simulation results. Section 9 concludes with a discussion on the scope of future work in 
this field. 

2. Theories of activated barrier crossing-Markovian limit 
For many isomerization reactions in solution, the reactive motion is a large- 

amplitude motion of a bulky group twisting around a molecular axis. The rate of 
isomerization, therefore, depends critically on the forces exerted by the solvent 
molecules on the twisting group. In most cases, the molecules are initially prepared, 
optically or by some other means, in the reactant well. At a finite temperature in the 
liquid state, this is a non-equilibrium situation. In the subsequent development towards 
equilibrium, a certain fraction of the molecules cross over the product state. In most 
cases there is an activation barrier which the molecules must surmount in order to form 
the product state. Naturally, the rate of the isomerization reaction depends critically on 
the height and the shape of the activation barrier. 

The earliest theory for chemical reactions in solution is the transition state theory. 
The transition state is identified with an imaginary 'dividing surface' separating the 
reactant and the product states in the configuration space. For a one-dimensional 
potential surface, the transition state is usually chosen to be the state with the 
maximumenergy in the barrier region. The basic assumption of the TST is that once the 
reacting system crosses the transition state, it never returns to the transition state. The 
TST rate constant is proportional to the total flux of trajectories from reactant to 
product side of the dividing surface. The flux can be calculated with a Maxwell- 
Boltzmann weighting at a given temperature. The TST rate is exact if and only if no 
trajectory, of any energy whatever, crosses the transition state more than once. It can be 
shown that when TST is not exact, it overestimates the exact, equilibrium rate constant 
(Wigner 1937, Pechukas 1981). 

The general expressions for the transition state rate constant were derived by 
Eyring and coworkers several decades ago (Laidler 1969). The rate constant is given by 

where Qf ,  Q R  and Qp are the canonical partition functions of the activated complex (the 
transition state), the reactant and the product, respectively. k, is the Boltzmann 
constant, h is the Planck constant and T the temperature. Eo is the activation energy 
which in the TST is the amount of energy that the reactant(s) must acquire at 0 K before 
they can react. 

For most chemical reactions in solution, equations (1) is rather useless because of 
the difficulties in evaluating the partition functions. The usual procedure is to express 
(1) in terms of thermodynamic functions which may be accessible experimentally. The 
following well known expression was derived by Wynne-Jones and Eyring (1935) 

k=-exp( k B  T -ASf/kB)exp( -AH'/k,T) 
h 

where ASf  and AHf are the entropy of activation and the enthalpy of activation per 
molecule, respectively. It is a standard procedure to relate the enthalpy of activation to 
the experimentally observable activation energy (Laidler 1969). 
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Isomerization dynamics in solution 5 

The main advantage of TST expression (2) is that one can, at least formally, include 
the effects of solvent interactions on the potential energy surface through A S  and A H f .  
However, (2) ignores the dynamical aspect of solvent forces totally. The effects of 
solvent viscosity on the isomerization reactions, or on any reaction in the condensed 
phases, find no place in the TST. In solution, the main assumption of TST-that no 
trajectory crosses the dividing surface more than once-breaks down. The frictional 
forces exerted by the solvent molecules induce recrossings of the trajectories and reduce 
the rate below the TST result. For many chemical reactions, including the isomeriz- 
ation reactions, the effects of viscosity on the reaction rate is well documented. 

In order to include the dynamical effects of solvent on the reaction rate, Kramers 
(1940) formulated a theory borrowing ideas from the theory of Brownian dynamics. 
Kramers’ theory played a key role in all the subsequent theoretical development of the 
activated chemical reactions in solutions and we briefly discuss Kramers’ theory and its 
limitations next. 

2.1. Kramers theory 
In order to study the effects of frictional forces on the rate of chemical reaction in 

solution, Kramers modelled the reactive motion as the passage of a Brownian particle 
over a one-dimensional potential barrier. Kramers assumed that the motion along the 
reaction coordinate is given by the following ordinary Langevin equation 

(3) 
dv 
dt P- = F(4 - Mt) +At) 

where p is the effective mass, v is the velocity along the reaction coordinate, F(x)  is the 
force arising from the potential in the barrier region, [ is the zero-frequency friction 
parameter andf(t) is the delta-correlated Gaussian white noise. 5 andf(t) are related by 
the fluctuation dissipation theorem (Kubo 1966) 

Cf(o)f(t)) = kBTCG(t) (4) 
Equation (2.4) is known as the white-noise approximation for the random force. F(x)  is 
assumed to arise from a static potential which is an inverted parabola in the barrier 
region with barrier frequency 

F = ~ o $ x  (5 )  

In order to calculate the steady state flux of particles across the potential barrier from 
the reactant to the product side, Kramers solved for the stationary solutions of the 
Fokker-Planck equation for the phase space probability density function P(x, v, t) 
which is obtained by standard methods from the Langevin equation (3). The final result 
of his analysis is the following well known expression for the rate constant k 

where oR is the frequency of the (assumed harmonic) reactant well and E, is the 
activation energy of the one-dimensional potential surface. 

Equation (6) has the following limiting behaviours. If the barrier frequency ob is 
much larger than the frequency parameter [, then we obtain the transition state result 
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6 B. Bagchi 

Throughout this review article, we shall refer to kTST as given by equation (7). This is the 
transition state result when the reactant well is harmonic with frequency oR and the 
reactive motion is one dimensional. 

In the opposite limit when [>>20b, then the rate constant is inversely proportional 
to the friction parameter 

This limit is called the Smoluchowski limit of the rate constant. 
The above two limits can be understood from simple physical reasoning. If the 

barrier is very sharp, then the particle spends too short a time on the barrier top to feel 
the frictional forces and we get the transition state result (equation 7). On the other 
hand, if the barrier is flat, then the motion is diffusive on the barrier top and we get 
inverse friction dependence of the rate. 

Equation (6), however, breaks down in the limit of zero friction i.e. the limit (7) 
cannot be exactly realized. This is because at very small friction, the rate determining 
step is the accumulation of energy necessary for the solute particle to reach the barrier 
top. Since the source of the activation energy is the friction itself, the rate will become 
proportional to friction at very small values of the friction parameter. In a separate 
treatment, Kramers obtained an approximate expression for k in this low-friction, 
energy controlled regime and his expressio‘n is given by 

Equation (9) correctly predicts that the rate goes to zero as the value of the friction 
parameter is decreased towards zero. 

A comparison of equations (6) and (9) shows that Kramers’ theory predicts a 
‘turnover’ of the rate constant as a function of the friction parameter, 5. Unfortunately, 
one cannot estimate the value of [ at which this turnover is expected from Kramers’ 
expressions (6) and (9) because they are not reliable near the turnover region. 

Recently Carmeli and Nitzan (1983) solved this vexing problem by obtaining an 
expression for the rate which is valid for all values of the friction, and yields the 
Kramers’ results both in the [-0 and in the [+co limits. As expected, this solution is 
not as simple as Kramers’ expressions and requires some numerical work to obtain the 
rate. 

In order to use Kramers’ expression to interpret experimental results, one must 
express the friction parameter in terms of the viscosity of the solvent. The usual practice 
is to use simple hydrodynamic relations to relate [ to viscosity q. For small molecules, 
slip boundary condition is known to provide a good description of the frictional force 
acting on a moving sphere. However, the friction that enters into Kramers’ expression 
is the friction acting on the reaction coordinate and not the macroscopic friction 
experienced by a macroscopic object freely translating or rotating in liquid. For most 
practical cases, it is a non-trivial exercise to calculate the frictional force on the reaction 
coordinate, even in the hydrodynamic limit. 

Kramers’ theory provides us with a simple and elegant expression for the frictional 
dependence of the rate. It also provides us with a nice physical picture of chemical 
reactions in solution. Unfortunately, Kramers’ theory has some limitations which 
make it difficult to apply to some realistic cases. These limitations have been discussed 
in the literature for many years. In the following, we simply list these limitations. 
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Isomerization dynamics in solution 7 

(1) Kramers’ treatment is one dimensional. In isomerization reactions the reactive 
mode may be coupled to other non-reactive modes. (For instance examples of 
non-reactive modes may be the vibrational motions in directions per- 
pendicular to the twisting motion.) The multidimensional nature of the 
potential surface may have an important effect on barrier crossing, especially at 
low viscosities. 

(2) The assumption that the solvent forces on the reactive motion are delta- 
correlated in time is suspect for sharp barriers for which cob ’ is smaller than the 
‘bath’ correlation time at high viscosities. In this limit, the reactant does not 
stay long enough at the barrier top to probe all the solvent motions. So, the zero 
frequency friction overestimates the solvent drag on the reactive motion, and 
one must consider frequency dependent friction. 

(3) The Langevin equation description is applicable only to those cases where the 
isomerizing molecule is much larger than the solvent molecules. 

(4) The influence of the solvent on the reaction potential surface is ignored. 

We next discuss an alternative approach to chemical dynamics in solution based on 
models derived from kinetic theory. This approach was developed by Skinner and 
Wolynes (1978, 1980), especially for those cases where the masses of the reacting 
molecule and the solvent molecules are comparable. 

2.2. BGK type theories 
In many realistic situations the size of the isomerizing molecule is comparable to 

that of the solvent molecules. In such cases, Kramers’ approach of treating the reactant 
as a Brownian particle is not justified. Skinner and Wolynes (1978, 1980), therefore, 
adopted a different stochastic approach to the dynamics of chemical reactions in 
solution. They studied a kinetic model with a phenomenological collision term, given 
earlier by Bhatnagar et al. (1954) which assumes instantaneous collisions which 
randomize velocities. The model is characterized by an average collision frequency, g, 
and a parameter y, which is the analogue of the ratio of the solvent to solute masses (in 
the original BGK model, y = 1). In this model, the limit y+O (solute mass much greater 
than the solvent molecule mass) corresponds to the Fokker-Planck Brownian motion 
picture and the limit y-, 03 (solute mass much smaller than the solvent molecule mass) 
corresponds to the situation in which reaction takes place surrounded by virtually 
immobile molecules. This limit is called the Lorentz limit because of its similarity with 
the Lorentz gas model. 

Let us first consider the limit where the solute and the solvent masses are 
comparable, i.e. y = 1 limit. Skinner and Wolynes (1980) obtained a series solution in the 
power of g- l  for this limit. The exact rate constant for this model was obtained by 
Hynes (1981) for any collision frequency g and his result is given by the following simple 
expression 

k kTST = 1 - 4 q  In 2 + +(1+ r> 

where r = g/4w, and +(x) = d In x!/dx is the digamma function. kTST is the transition 
state result for the parabolic barrier assumed in deriving (10). If we define g by </,u where 
i is the friction constant, then (10) gives results very similar to Kramers’ expression (6). 
Equation (10) predicts Smoluchowski limit for g-+m and TST limit for g+O. 
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8 B. Bagchi 

Equation (10) breaks down in the very low viscosity region where the rate should be 
proportional to g. Skinner and Wolynes (1978, 1980) obtained a series expansion in 
powers of g for this limit. They also proposed some interesting Pade approximants 
which interpolate between the small viscosity, energy-controlled regime and the large 
viscosity, diffusive limit. For a symmetric (w, =ab) parabolic barrier, the simplest Pade 
approximant which shows the cross-over behaviour has the following form 

This form has recently been used by Sandstrom and Gillbro (1984a) to fit the 
experimental results on isomerization of TPM dyes in alcohol solution. 

Skinner and Wolynes (1980) also obtained analytic and numerical solutions for 
y - t O  and y + a  limits. The TST was found to be particularly inaccurate in the Lorentz 
(y-+O) limit. 

Montgomery et al. (1979) have performed a stochastic simulation of the BGK 
model. In the weak coupling limit their results agree well with the analytical studies of 
Skinner and Wolynes (1978). 

3. Experimental studies 
In recent years there has been a tremendous growth of experimental research on 

photochemical isomerization in solution. The advances in laser spectroscopy, especi- 
ally the availability of ultra-short laser pulses, have played a key role in this growth. 
The number of molecules that have been studied is rather large. Among them, the 
cyanine dyes and other substituted polyenes have been studied most extensively in 
recent years. These molecules undergo large conformational changes upon optical 
excitation and they provide interesting systems for the study of solvent influences on 
the excited state decay. In table 2, we have collected the names of the molecules that 
have been studied in recent years. 

The study of photoisomerization of an initially prepared excited state is com- 
plicated by several factors. Firstly, there can be several modes of decay of the excited 
state. The rate of non-radiative relaxation via a large-amplitude motion in the initially 
prepared excited state is the quantity of interest in most studies. However, the 
competing influences of direct internal conversion from the initially prepared excited 
state and of possible intersystem crossings must also be considered carefully before any 
quantitative measure of the relaxation can be obtained. Secondly, both the solvent and 
the temperature can adversely affect the rate of radiative decay from the excited state. 
Thus, one must be careful in choosing solvents. Often it ishelpful to restrict the study to 
one class of solvents, such as n-alkanes or n-alcohols. Within a homologous series, the 
nature of the solute-solvent interaction may not change significantly aria thus a 
meaningful comparison is possible. Thirdly, the solute molecule may become much 
more polar on excitation and develop specific interactions with the solvent, which may 
complicate the analysis of the experimental data. 

In order to gain some insight into the physics of photochemical isomerization in 
solution, let us consider a specific example: the photophysics of the cyanine dye 3,3'- 
diethyloxadicarbocyanine iodide (DODCI). The mechanism of relaxation of the 
excited singlet state of this molecule has been investigated in detail and a kinetic scheme 
has been proposed by Rulliere (1976). According to Rulliere, the excited DODCI 
undergoes a thermally activated twist to an intermediate geometry which rapidly 
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Isomerization dynamics in solution 9 

Figure 3. illiere model for DODCI photophysics. n, t and i represent normal, twiste- and 
isomer forms of DODCI. kicr k ,  and k, refers to the rates of internal conversion, radiative 
decay and twisting, respectively. E ,  is the height of the activation barrier to the twisting 
motion. 

decays to ground state by internal conversion, followed by a branching between the 
isomer and the normal forms. This scheme is shown pictorially in figure 3. 

In figure 3, the non-radiative relaxation of the excited state is governed by the 
activated barrier crossing from the normal to the twisted state because the internal 
conversion from the twisted state is very rapid. The large-amplitude motion involved in 
barrier crossing makes the rate of non-radiative relaxation strongly dependent on 
solvent viscosity which normally resists the reactive motion. In addition, the polarity of 
the solvent may profoundly influence the nature of the potential surface of the excited 
state. 

The experimental study of photoisomerization in solution thus consists of several 
distinct parts. Firstly, one must determine the different channels of decay of the excited 
state. Secondly, one has to estimate the intrinsic activation barrier E,  to the non- 
radiative relaxation. This is usually done by measuring the isoviscous rate as a function 
of temperature and obtaining the Arrhenius parameters by standard procedure. 
Activation energy obtained in this way contains no contribution from the viscosity 
activation energy but definitely does contain solvent contributions. Thirdly, one 
systematically varies the viscosity of the solvent by changing temperature or pressure, 
or sometimes using different but similar solvents. The reason for using similar solvents 
is to obtain the variation of rate as a function of viscosity without introducing any 
undesirable change in solvent effects on the reaction energy surface. Fourthly, one may 
study the effects of solute-solvent interactions on the potential energy surface by using 
solvents of dissimilar nature. 

Recent investigations have concentrated on two different regimes of solvent 
viscosity: high viscosity where the reaction is diffusion controlled and where non- 
Markovian effects become important, and the low-viscosity regime where the reaction 
is energy controlled. The cross-over between these two regimes of viscosity, character- 
ized by a non-monotonic dependence of the rate on the solvent viscosity, has also 
drawn considerable attention. In the following we shall briefly review the important 
results of the recent investigations. 

The photochemical isomerization of the dye molecule DODCI has been inves- 
tigated by Velsko and Fleming (1982a) and Velsko et al. (1983). Their studies 
concentrated mainly on the high-viscosity regime. Both the ground-state and the 
excited-state isomerization rate constants were obtained as a function of viscosity in n- 
alcohol solvents. The most important result of their investigation (Velsko and Fleming 
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10 B. Bagchi 

1982a, Velsko et al. 1983) is that Kramers’ expression fails to describe the viscosity 
dependence of the twisting rate. If low-viscosity rates were fit to Kramers’ expression, 
then the experimental rates at high viscosities lay consistently higher than predicted by 
theory. On the other hand, if high-viscosity points were fit to Kramers’ expression, the 
theory predicted too low values for rates at low viscosities. In other words, Kramers’ 
theory does not have the correct curvature necessary to describe the experimental 
results at both low and high viscosities. Velsko et al. found that their experimental 
results could be fitted very well to a viscosity dependence of the following form 

k =  Aq-“ exp (- E,/k,T) 

where A is a viscosity-independent constant and E,  is the isoviscous activation energy. 
The value of the exponent a lie in the range 1 >, a 2 0 1  with CI = 0-26 for the ground state 
and a= 0.43 for the excited state DODCI. Note that at the high viscosities studied by 
Velsko et al., Kramers’ theory predicts a= 1, i.e., the attainment of the Smoluchowski 
limit. This non-attainment of the Smoluchowski limit is remarkable and will be 
discussed in the next section. 

Velsko and Fleming (1982 b) have also studied photoisomerization of diphenyl 
butadiene (DPB) in n-alkanes with similar conclusions. In this case they obtained good 
fit of their experimental results to equation (12) with CI =0.59. Rothenberger et al. (1983) 
studied the photoisomerization of trans-stilbene in n-alkanes. They also reached the 
conclusion that Kramers’ theory breaks down in the high-viscosity region. 

The precise reason for the breakdown of Kramers’ theory at high viscosities is still 
not completely understood. The departure from Kramers’ theory obviously implies a 
reduction of the effect of the macroscopic, zero-frequency viscosity on the reactive 
motions. A clue to the physical origin of this reduced viscous effect is that magnitude 
of the exponent a correlates well with the frequency of the potential barrier. If a b  is 
small, then a 2: 1, but if is large (which implies a sharp barrier), then a is much less 
than unity. Since o; is a measure of the ‘residence-time’ bear the barrier top, it appears 
that the frequency dependence of solvent friction may play an important role in the 
breakdown of Kramers’ theory. The importance of the frequency dependence of 
friction was originally suggested by Velsko and Fleming (1982 b) and was later taken up 
by Bagchi and Oxtoby (1983), Rothenberger et al. (1983) and by Grote et al. (1984). We 
shall return to this in the next section where we discuss ‘memory effects’ in 
isomerization reactions in solution. 

is usually obtained by 
fitting the experimental results (obtained preferably at low viscosities) to Kramers’ 
expression with the additional assumption ob = wR. There is thus considerable 
uncertainty in the values of wb quoted in the experimental literature. 

A different kind of behaviour is shown by stilbene in alcohols (Sundstrom and 
Gillbro 1984 b) and DPB in alcohols (Keery and Fleming 1982). Here the barrier for 
isomerization is small and the rate of isomerization has a simple inverse viscosity 
dependence. This kind of isomerization will be discussed in greater detail in Section 5. 

Several investigations have been carried out in recent years in low-viscosity solvents 
in an attempt to realize the energy-controlled regime of the reaction rate. The cross- 
over to the energy-controlled regime at very low viscosity from the diffusion-controlled 
regime at higher viscosities should be signalled by a ‘turnover’ in the rate’s dependence 
on viscosity. In the energy-controlled regime, rate increases with viscosity, whereas in 
the diffusion-controlled regime, rate decreases. 

We should also mention at this point that the estimate of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Isomerization dynamics in solution 11 

Courtney and Fleming investigated photochemical isomerization of DPB (1 984) 
and stilbene (1985) in liquid alkanes at low viscosities by time-resolved spectroscopy. 
Even at very low viscosity (0.039 cp for DPB), no sign of a turnover was observed in 
their experiments; the rate of isomerization was a monotonically decreasing function of 
viscosity at the lowest viscosity studied. In an interesting study, Courtney et al. (1984) 
compared the isomerization rates measured for DPB in isolated molecule (Shepanski 
et al. 1983) and in low-viscosity solvent (Courtney and Fleming 1984). Courtney et al. 
(1984) plotted the rates of photoisomerization in an isolated molecule and in solution 
against the average vibrational energy of DPB. The results for the jet and solution 
results were found to be strikingly similar. In fact the results lie on a continuous line and 
the rates are very similar near zero viscosity. This agreement strongly suggests that the 
failure to observe the ‘turnover’ predicted by one-dimensional Kramers’ theory at very 
low viscosities arises from the fact that the other degrees of freedom of the molecule act 
as a ‘bath‘ for the twisting motion. This molecular ‘bath’ helps efficient intramolecular 
vibrational relaxation in the reactant well and also provides, by a sudden fluctuation, 
the energy necessary to climb up to the barrier. Thus, the reaction does not attain the 
energy-controlled regime even at the very low viscosities. 

In contrast to the above results, there are at least two reports in the literature which 
claimed to have observed the ‘turnover’ behaviour. Hasha et al. (1982), using a high- 
pressure N.M.R. technique, found that the rate of cyclohexane ring inversion first 
increases and then decreases slightly as solvent viscosity is increased. Hasha et al. (1982) 
interpreted their results in terms of one-dimensional stochastic models of barrier 
crossing. Recently Sundstrom and Gillbro (1984 a) reported the observation of the 
‘turnover’ behaviour in the isomerization of triphenylmethane dyes in alcohol 
solutions. The experimental results were compared with the theory of Skinner and 
Wolynes (1978, 1980) with good qualitative agreement. 

The preceding review of the experimental research is very brief and perhaps 
incomplete. This is an exciting field of research at present and many new results have 
come out in the last couple of years. They have posed serious challenge to the 
theoreticians. 

4. Memory effects in the isomerization reactions 
The rate of a chemical reaction which involves activated barrier crossing depends 

critically on the shape of the barrier. The shape of the barrier is usually expressed by the 
harmonic frequency o,,, which is a measure of the sharpness of the barrier. For an 
isomerization reaction which involves a twisting motion around a molecule-fixed axis, 
there is an additional constraint: the reactant and the product states are separated by a 
fixed angle. This implies that there is a relation between the intrinsic barrier height, E,, 
and o,,. If E ,  is increased, then ob must also increase, that is, the barrier must become 
sharper. This relationship between E ,  and was recently addressed by Robinson et al. 
(1984). 

Now, the barrier frequency o,, is a measure of the potential force that acts on the 
reactant particle near the barrier region. Thus o, is a measure of the ‘residence-time’ 
of the reactant near the barrier region. If the barrier is broad and low so that ’ is 
much larger than the bath correlation time z (=,u/[), then the reactant molecule stays in 
the barrier region long enough to probe the dynamics of all the degrees of freedom of 
the solvent that contribute to the macroscopic shear viscosity. In this case, there is a 
clear separation of time-scale between the correlation time of the bath molecules and 
the rate of motion of the reactant molecule in the barrier region so that the assumptions 
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12 B. Bagchi 

of ordinary Langevin equation holds and Kramers’ theory gives a satisfactory 
description of the viscosity dependence of the rate constant. 

The situation, however, changes drastically when the barrier is high and sharp. 
When 0;’ is much smaller than the correlation time z, the reactant does not stay for 
sufficient time at the barrier top to probe all the motions of the solvent molecules. 
Especially, the low-frequency motions will not be able to respond to the fast reactive 
motion across the barrier if cob is sufficiently large. If wb is increased (at constant 
viscosity) by changing the solute particle, then the effect of viscosity on reaction rate 
should decrease and eventually the rate should approach the transition state result. In 
the intermediate regime where the ‘residence time’ of the reactant on the barrier top is 
comparable to the bath correlation time, the dependence of rate on viscosity of the 
solvent is non-trivial. In this regime, the reactant molecule can probe only a part of the 
solvent motions. Therefore, the effective frictional resistance on the reactive motion is 
different from that given by the zero-frequency friction. This implies that Kramers’ 
treatment is inadequate in the intermediate regime. In particular, the solvent forces on 
the reactive motion cannot be considered uncorrelated at all times, as assumed in the 
Kramers’ theory. When q, is large, the reactive motion feels the correlated motions of 
the bath degrees of freedom so the memory effects must be taken into account. This 
implies that we must abandon the white-noise assumption on random forces in the 
Langevin equation and the friction should become a function of frequency (or 
equivalently, of time). This calls for a generalization of Kramers’ theory. The 
generalized theory should include the non-Markovian effects. This was accomplished 
by Grote and Hynes (1980). 

4.1. Grote-Hynes theory 
In order to include non-Markovian effects, Grote and Hynes (1980) assumed the 

following generalized Langevin equation (GLE) for the dynamics along the reaction 
coordinate. 

dv 
dt 

p- = F(x)  - +f ( t )  (13) 

where the different terms have their old meaning. The frequency dependent friction C(t) 
and the Gaussian random force f (t) are related by the fluctuation dissipation theorem 

As before, the systematic force F(x)  is one dimensional and in the barrier region it is 
given by 

From the generalized Langevin equation, one can derive a generalized Fokker-Planck 
equation for the probability distribution function P(x,  Y, t )  (Addelman 1976). By using 
the probability distribution solving GLE (13) as an initial value problem, Grote and 
Hynes 1980 obtained the following simple and elegant expression for the rate constant 

k = kTST(A,/ob) (16) 
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Isomerization dynamics in solution 13 

where kTST is the transition state rate constant given by equation (7). I ,  is given by the 
following self-consistent relation 

where &I) is the Laplace transform of the time dependent friction 

“ P ) =  jm dtexp(-pt)i(t) (18) 
0 

Equation (16) predicts the transition state result for very weak friction (A, -ab), and 
the Kramers’ result for low barrier frequency [i.e., ob+0 so that ((A,) can be replaced by 
[(0) in (17)]. If the barrier frequency is large (wbz1013s-1)  and the friction is not 
negligible ([(O)/p - ob), then the situation is not so straightforward. In this regime, 
which often turns out to be the relevant one experimentally, the effective friction [(A,) 
can be quite small even if the zero-frequency (i.e. the macroscopic) friction (propor- 
tional to viscosity) is very large. The non-Markovian effects can play a very important 
role in this intermediate regime. 

In order to apply Grote-Hynes formula (16) to realistic cases, we need a reliable 
expression for the frequency dependent friction in terms of known quantities, especially 
as a function of viscosity. In their original paper, Grote and Hynes used some simple 
parametrized models to show that under certain circumstances k can be quite different 
from the predictions of Kramers’ theory. Bagchi and Oxtoby (1983) used the 
hydrodynamic expression for the frequency dependent friction (Zwanzig and Bixon 
1970) to investigate the effect of the frequency dependence of friction on the rate of 
photochemical isomerization in solution. As discussed in the last section, recent 
experiments (Velsko and Fleming 1982 a, b, Velsko et al. 1983) have shown a dramatic 
breakdown of Kramers’ theory at high viscosities. The calculations of Bagchi and 
Oxtoby suggest that the experimentally observed partial saturation effects on rate may 
arise from the fact that the effective friction in the barrier region in much smaller than 
its zero-frequency value at high viscosities for barriers characterized by large ob. 

Hynes and coworkers (Van der Zwan and Hynes 1984, Grote et al. 1983) have 
evaluated the frequency dependent friction for several specific cases which we shall 
discuss below. Next we discuss the results of the calculation of Bagchi and Oxtoby 
(1983). 

4.2. Frequency dependent friction 
Photochemical isomerization processes in molecules like DODCI, DPB, stilbene 

and 1,l’-binapthyl involve a twisting motion of bulky groups around a molecular axis. 
So, as a first approximation this twisting motion can be modelled as the rotational 
motion of a sphere of hydrodynamic radius R around a molecule-fixed axis; the centre 
of the sphere is at a distance ( R  + I )  from the axis and 1 is related to the C-C bond length. 

The friction experienced by the moving sphere consists of two parts: one 
contribution comes from the translational drag which is equal to (R  + Z)2ftr, while the 
second is a pure rotational friction fr due to rotation of the sphere around its own axis. 
Happel and Brenner (1965) have shown that the coupling between rotational and 
translational friction for a sphere is zero, so the total friction is the sum of the two 
contributions 

I= ( R  + 1)’ftr + [r (19) 
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14 B. Bagchi 

The spherical shape, however, may not be a good approximation for many molecules of 
experimental interest; a spheroidal shape is more realistic for most cases. However, (19) 
is reasonable as a first approximation since we are mainly interested in the qualitative 
effects that arise from the frequency dependence of friction. In writing (19), we have also 
neglected the hydrodynamic interactions arising from the presence of the organic 
molecule which is considered fixed. Recent calculations of McCaskill and Gilbert 
(1979) indicate that the hydrodynamic interactions may not be important in 
isomerization dynamics. 

The expressions for the frequency dependent frictions ftr and fr can be obtained by 
solving the generalized Navier-Stokes equation which is obtained by generalizing 
ordinary hydrodynamics to frequency domain (Zwanzig 1965). For ftr, we use the 
Zwanzig-Bixon (1970) expression (with the correction of Metiu et al. (1977)). In the 
Laplace plane, c,, is given by 

Y = p  cz+- [ 
3 
A 

P=-(3+3Y+ Y2) 

2 + PI?, 
3X2(1 +X)(2+2Y+ Y2)  

A = 2X2[3 + 3 Y+ P] + Y’[3 + 3X + X’] + 
2 + Pi?, 

qs is the frequency dependent shear viscosity, po the solvent density, c the velocity of 
sound and P the slip parameter, zero for slip and infinity for stick boundary conditions. 
The longitudinal viscosity q,(p) is related to the shear viscosity ?,(p) and bulk viscosity 
%(PI by 

?I@) = %s(P) + %(P) (21) 

Equations (7) and (8) are known to give a satisfactory description for the velocity 
correlation function for small spherical molecules, except for very short times. 

The above hydrodynamic expression for [(p) is not reliable for very high frequencies 
(p > 1013 s-’). For isomerization reactions in solution, the values of the reactive 
frequence A,, given by equation (1 7), usually lie in the range where the hydrodynamic 
description is reliable. 

For rotational friction, things are somewhat different due to the fact that there is no 
friction for the perfect slip boundary condition, while the stick limit gives too large 
values of friction for small molecules. The current approach, of course, is to consider a 
spheroidal shape since molecules are not perfect spheres. But for this case there is no 
analytical expression for Cr(p), and even the zero-frequency friction has to be evaluated 
numerically (Hu and Zwanzig 1974). This problem may not be serious for most cases 
since [, is generally smaller than Ct, unless the bulky twisting group is either very large 
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Isomerization dynamics in solution 15 

or carries a charge (as in DODCI (Waldeck and Fleming 1981)) so that stick limit is 
appropriate. For the perfect stick limit the expression for frequency dependent friction 
has been given by Montgomery and Berne (1977) 

where X is given by (20 b). For DPB, pure slip limit is applicable so that fr(p) is zero, but 
for DODCI in alcohol solvents, stick limit is appropriate and [(p) contains contri- 
butions both from ft, and fr 

Expressions for the frequency dependent viscosities, ~ , (p )  and qv(p), are needed to 
evaluate f ( p ) .  Bagchi and Oxtoby (1983) assumed the simple Maxwell forms 

0 
YIV 

YI"(P) =- 
1 + PTV 

where q," and yl,O are the zero-frequency shear and bulk viscosities. The viscositic 
relaxation times z, and z, are physical constants connected to the rate of relaxation of 
shear and bulk modes of the solvent. The estimation of these relaxation constants poses 
a problem because for organic liquids like hexane, octane or butanol no reliable 
experimental data exists for evaluation of zs and zv by fitting them to equations (23). 
Bagchi and Oxtoby (1983) used the following semiempirical method to evaluate z, and 
z,. For the single relaxation of shear and bulk stresses assumed in writing equation (23), 
we have the following exact relations for z, and zv (Herzfeld and Litovitz 1950, Bhatia 
1967) 

where G ,  is the infinite frequency shear modulus and K ,  is the relaxation part of the 
bulk modulus. Both G, and K ,  are fairly constant for organic liquids over the range of 
temperature studied in experiments. G ,  is close to lolo dyn/cmZ and K ,  related to G ,  
by the empirical relation 

K,=+G, (25) 
To evaluate [ (p) ,  we still need values for a large number of quantities: the variation 

of q,", q:, c, p o  with temperature. Fortunately, extensive tables of experimental values 
exist for these quantities (Nozdrev 1965). For DPB, we take R=3.6A and use slip 
boundary condition, while for DODCI, we take R = 5 A and stick boundary condition 
(p= co in (20)). In both cases we use 1 = 1.5 A. 

Figure 4 depicts the behaviour of the frequency dependent friction evaluated using 
the above hydrodynamic expressions. The parameters used in figure 4 are those for 
DPB in alkanes with cob= 5 x 1012s-1 and the ratio f ( p ) / [ ( p  =0) is plotted as a function 
of frequency p for several values of the shear viscosity. At low viscosities, this ratio 
changes very~slowly, staying close to unity (the Kramers' limit). But as viscosity is 
increased, &)/&I = 0) shows a sharper fall and at viscosities near 10 cp, the ratio 
rapidly goes to zero at higher frequencies (p N 0.50,). Since the value of the reactive 
frequency 1, is expected to be comparable to (this is confirmed below), the use of 
zero-frequency friction as a measure of the solvent drag on the reactive motion vastly 
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16 B. Bagchi 

FrQq UQnC y p (x Wb) 

Figure 4. Values of ((p)/((p=O) are plotted against frequency p for various values of the shear 
viscosity q:. The values of tf (in cp) are indicated on the graph. 

overestimates the viscous effect; the effective friction at high viscosities is much smaller 
than its zero-frequency value. Physically this means that many of the low-frequency 
motions that contribute to [(p = 0) do not affect the reactive motion across the barrier if 
the barrier frequency is sufficiently high. In long alkane chains, examples of low- 
frequency motions are those rotations around the backbone which involve cooperative 
motions of several backbone atoms. These kinds of motions will not respond if the 
liquid is driven at high frequency. 

The above discussion of [(p) is based on a generalized hydrodynamic model. If the 
barrier frequency cob is very large ( c o b 2  loi4 s-'), then the use of a hydrodynamic model 
for [(p) is questionable (Zwanzig and Bixon 1970). For chemical reactions in simple 
liquids, like argon, a reliable expression for [(p) is available from computer simulations 
(Levesque and Verlet 1970). The Levesque-Verlet friction coefficient has both a short- 
time collisional part and a long-time hydrodynamic part. The merit of this form is that 
it can be used for large cob cases. 

Grote et al. (1984) used the Levesque-Verlet friction to estimate the effects of the 
frequency dependent friction on the rate of barrier crossing. These authors found that 
for high barrier frequency the rate does not track the long-time hydrodynamics, and the 
short-time collisional part makes the dominant contribution. They have also obtained 
a slowing in the rate of fall of the rate constant with viscosity. 

4.3. Rate constant results 
Several authors have used the Grote-Hynes formula (16) to evaluate the rate 

constant k. Bagchi and Oxtoby (1983) used it to explain the experimental photoiso- 
merization rate results of Velsko and Fleming (1982, and Velsko et al. (1983). 
Rothenberger et,al. (1983) have recently used frequency dependent friction in order to 
describe their experimental results of stilbene isomerization. Below we discuss results of 
these two investigations. 

Bagchi and Oxtoby used the hydrodynamic expression for the frequency dependent 
friction, as described in the last subsection. Their solution of Grote-Hynes formula (1 6)  
and (17) reproduced the qualitative features of the viscosity dependence observed in 
experiments of Fleming and co-workers. Figure 5 shows the results of their theoretical 
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Isomerization dynamics in solution 17 

3” 
\ 
L 

x 

Shear Viscosity (ys) 
Figure 5. Values of rate parameter Lr/wb are plotted against zero frequency shear viscosity 

for wb=6.0 x 10” s- l .  Results are for isomerization in octane (A) and in butanol(0) are 
shown. The solid line is a fit of the data to the form k=A(qP)-“ with a=0.25. The dashed 
line is the result from Kramer’s theory for the same value of the barrier frequency. 

calculations for rate (A,/mb) as a function of viscosity for DPB parameters with 
= 6 x 10” s- ’. For comparison, the results of Kramers’ theory are also shown in the 

same graph. As can be seen from the graph, there is a marked slowing in the decrease of 
the rate at high viscosities, a fact which is in qualitative agreement with experiment and 
is clearly absent in the Kramers’ theory. In this figure, the data for both octane and 
butanol are used and viscosity is changed by the variation of temperature. If ob is held 
fixed, then the results for these two liquids do not differ at all. However, it has recently 
been shown that wb of DPB can change significantly (Keery and Fleming 1982) from 
normal alkanes to polar liquids like alcohols. Thus; the effects of solvent interactions at 
least partly manifest themselves through ow 

As can also be seen from figure 5, the results of theoretical calculations can be fitted 
very well to a form kiso = A(?:)-” (equation (3)) with a value of exponent a significantly 
less than unity. For w b = 6 x  10’2s-1, one finds a value of the exponent a=0.25, 
whereas if we choose ob =4 x 10l2 s- ’, one finds a =0.64. The experimental results give 
a value of a=O.59 for DPB is alkanes (Velsko et al. 1983). The theoretical value of 
needed to reproduce the experimental value of a is obviously too small, for both DPB 
and DODCI. This is an important problem in isomerization dynamics in solution and 
we shall return to it later. 

Rothenberger et al. (1983) have also attempted to explain their experimental results 
on photoisomerization of trans-stilbene in liquid n-alkanes by using Grote-Hynes 
theory. They used the same hydrodynamic model as used earlier by Bagchi and Oxtoby 
with one difference: they evaluated G, and K,  and hence z, &d z,, from Brillouin light 
scattering experiments of Champion and Jackson (1976). They found values 
G, = 7 x lo8 dynlcm’ and K ,  = 9 x lo8 dynlcrn’. These values of G and K ,  are too low; 
the experimental value of G ,  for organic liquids, like alkanes, are close to 
10’’ dyn/cm2. The reason for this low value obtained by Rothenberger et al. is that 
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18 B. Bagchi 

Brillouin spectra are of little help in the evaluation of relaxation times when they are in 
the picosecond regime. 

Rothenberger et al. fitted their experimental results both Kramers’ and Grote- 
Hynes theory. They obtained better agreement with the latter theory with the values 
wb= 1-5 x 10” s-’ and w,=9.6 x 1013 s-’, where wR is the harmonic frequency of the 
reactant well. The value of is again too low. Even if one uses reasonable values for 
G, and K ,  the value of w,, needed to reproduce the experimental results is still too low. 
This low value of wb is hard to imagine when the barrier height is sufficiently large, as in 
DPB or in DODCI. The theory therefore predicts an unphysical potential surface. 

The reason for the unphysical value of wb given by the theory is not well understood 
and this remains an outstanding problem in this field. Among many factors that may be 
responsible for the failure of theoretical calculations in predicting reasonable value for 
wb, the following three seem most likely: 

(a) The one-dimensional picture of the stochastic theories may not be applicable to 
the isomerization reactions of the type discussed here. 

(b) The hydrodynamic expression (equations (20)) for the frequency dependent 
friction and the subsequent approximation in the evaluation of zs and z ,  are 
not reliable. 

(c) There is a ‘hidden relationship’ between the intrinsic barrier height E ,  and the 
barrier frequency ob This relationship has recently been discussed by 
Robinson et al. (1984) and is neglected in the fitting of Grote-Hynes theory to 
experimental data. 

The one-dimensional character of Grote-Hynes theory is no doubt an important 
limitation. Several authors (Carmeli and Nitzan 1984, Grote and Hynes 1981, Fonseca 
et al. 1983) have considered the effects of a coupling between the reactive coordinate 
and another non-reactive coordinate. The main effect of the non-reactive coordinate is 
to open a new (non-Markovian) channel between the reactive coordinate and the 
thermal bath. Thus the multi-dimensional nature leads to a frequency dependent 
friction even when the random forces acting on the different modes are assumed to be 
white noise i.e. delta-correlated in time. This introduces a new aspect to the dynamics of 
isomerization because there can always be coupling between the reactive mode (e.g., the 
twisting motion of the bulky group) and a non-reactive mode (such as the rotational 
motion of the bulky group around a different axis). Thus, the non-Markovian theory 
partly compensates for the multi-dimensional character, but the form of the frequency 
dependent friction is now different. If the random forces have finite correlations in time, 
then additional contribution to the frequency dependent friction enters through the 
multidimensional character of the reaction. A careful analysis of the role of this 
contribution is yet to be carried out. 

We have already discussed some of the limitations of the hydrodynamic treatment 
of the frequency dependent friction. Rothenberger et al. (1983) have suggested that the 
hydrodynamic friction is unreliable when the solvent molecules are larger than the 
isomerizing solute molecules. Thus, as the solvent is varies from C,-alkane to Clo- 
alkane, a qualitative change takes place in the solute-solvent coliisional interactions. 
Clearly, these structural effects are to be incorporated into the theoretical description in 
order to explain the experimental results quantitatively. 

We have already mentioned that due to the geometric constraint on the 
isomerization processes, the reactant and the product states are separated by a fixed 
angle. Now, due to rotational symmetry of the intermolecular potential, this angle must 
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Isomerization dynamics in solution 19 

be less than 180”. This implies that there is a relationship between the intrinsic barrier 
height E ,  and the barrier frequency o,,. However, the effects of this relationship on the 
isomerization process, especially in Grote-Hynes theory, is yet to be investigated. 

4.4. Validity of the Smoluchowski limit 
Experiments of Velsko and Fleming (1982a, b) and Velsko et al. (1983) show that 

under certain situations the Smoluchowski limit (SL) of Kramers’ equation (i.e., l/y: 
dependence of the rate) is not observed even at relatively high values of viscosity 
(y,“ 11 20 cp). This is clearly in contradiction to the traditional belief that at high 
viscosities, when the bath correlation time z (= p / [ )  is small compared to o; I ,  one 
obtains Smoluchowski behaviour. Since at the higher values of y: studied by Velsko 
and co-workers, z is much smaller than w; (a typical value of z for DPB at 20 cp is 
1 0 - l ’ ~  whereas oil is about s), the non-attainment of SL is noteworthy and 
deserves further investigation. 

Bagchi and Oxtoby (1983) suggested that the non-attainment of SL can be 
explained within Grote-Hynes theory. If the frequency dependent viscosity can be 
approximated by equations (23) and (24), then a new time constant related to the shear 
and bulk relaxation times z, and z, enters the problem. When 7; and y,” become very 
large, z, and z, become very large as well, and frequency dependence of the friction 
become significant. In this limit p z , ~  1, so that 

and 

i.e. y,(P) and y,(p) become almost independent of the zero-frequency viscosity y:. So, if 
y,” is varied by changing temperature, then ys(p) and y,(p) would change only through 
the weak dependence of G ,  and K ,  temperature. Therefore, the rate of isomerization 
would show only a weak dependence on a,”. This is markedly different from the low 
viscosity behaviour where pz ,  < 1 over the relevant values of p (i.e. close to Ar) and the 
frequency dependent rate theory predicts results similar to Kramers’ theory. This is 
indeed observed in numerical evaluation of rate constants; that is, there are two distinct 
regions of completely different slope in the plot of rate constant versus viscosity and SL 
is not attained even at viscosities much larger than that predicted by Kramers’ theory. 

This raises the important question: under what conditions can Smoluchowski 
behaviour be observed? Experiments (Keery and Fleming 1982) indicate that SL is 
attained when ob is small, which is in agreement with Grote-Hynes theory. But if the 
barrier is high and sharp, frequency dependence is important and SL may never be 
realized at arbitrarily large shear viscosity. 

The above discussion is of course qualitative because the validity of Maxwell forms 
(23) is questionable in the high-viscosity regime. Nevertheless, the validity of the above 
argument seems reasonable in the two extreme limits: o;’ >>z (Kramers’ limit) and 
o; <<z (rate becomes independent of y,” for large y,”). However, most experimental 
situations lie in the intermediate regime. Unfortunately, no reliable expression for the 
frequency dependent friction is available for those liquids which are mostly used; even 
the hydrodynamic expression needs many simplifying assumptions. In one limit, 
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20 B. Bagchi 

however, one can get a definite answer. This is the incompressible limit of the 
hydrodynamic expression for the frequency dependent friction. In this limit an analytic 
expression for 1, can be obtained (Bagchi 1985). This expression clearly reveals three 
different regions in the rate constant dependence on viscosity. In addition to the TST 
and SL limits, one obtains a region where ka(qg)-’ with a less than unity. 

Grote et al. (1984) recently suggested that in certain cases rate constant can even 
increase with viscosity as opposed to the expected decrease. This fascinating prediction 
is based on the premise that for high-frequency barriers, the short-time ‘collisional’ 
contribution dominates the frequency dependent friction. Theoretically, this is quite 
plausible. It would be interesting to obtain experimental confirmation of this 
prediction. 

5. Isomerization dynamics in the absence of an activation barrier 
There are several important isomerization reactions in solution in which the 

intramolecular potential surface does not present a significant barrier 
( E ,  << 1 kcal/mole) to the motion leading to the isomerization reaction. These 
isomerization reactions are usually probed by studying the viscosity dependent non- 
radiative decay of an excited state of the molecule. The rate-determining step in the 
electronic relaxation process of the initially formed excited state involves large- 
amplitude motion which is usually rotation of a bulky group around a molecule-fixed 
axis. Two well documented isomerization reactions in solution where non-radiative 
relaxation occurs without the intervention of a sizeable activation barrier are the 
relaxation of triphenylmethane (TPM) molecules in lower n-alcohols (Sundstrom and 
Gillbro 1984b, Cremers 1980, Ippen et al. 1976, Yu et aI. 1977) and the relaxation of 
trans-stilbene in n-alcohols (Sundstrom and Gillbro 1984 c). Of these two, the former, 
that is, the case of TPM due molecules, has been studied extensively. Especially, the 
viscosity dependence has been investigated by a variety of steady-state and time- 
resolved spectroscopic studies. The experimental findings are summarized below. 

0) 

(ii) 

(iii) 

The time dependence of the excited state decay is viscosity dependent. The 
decay is usually single exponential at low viscosity, but becomes multi- 
exponential as viscosity of the solvent is increased (Ippen et al. 1976, Cremers 
and Windsor 1980, Sundstrom and Gillbro 1984~). This change in the form of 
the decay curve is an important feature of the radiationless relaxation in the 
absence of an activation barrier. 
The fluorescence quantum yield +f depends on a fractional power of the 
solvent viscosity. Following the initial suggestion of Forster and Hoffmann 
that 4f C C ~ ” ~ ,  several workers have found adequate fits to this form over large 
viscosity ranges (Forster and Hoffmann 1971, Hirsch and Mahr 1979, Brey 
et al. 1977). 
Ground-state recovery experiments carried out a range of wavelengths have 
suggested the existence of a short-lived intermediate in the relaxation process 
(Sundstrom et al. 1982, Grzybowski et al. 1979). Recent studies of Sundstrom 
and Gillbro (1984 c) further substantiate this suggestion. They carried out 
transient absorption measurements by varying the excitation and the 
analysing wavelengths independently and observed that for crystal violet and 
for ethyl violet, the radiationless relaxation time constant T,, depends on the 
analysing wavelength. In particular, the absorption recovery experiments with 
,Iexcit = Aanalyse performed at wavelengths corresponding to short wavelength 
should, in the absorption spectrum, yield lifetimes approximately twice as long 
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Isomerization dynamics in solution 21 

as those obtained in the long wavelength part of the spectrum. But for some 
other TPM dye molecules, Malachite Green and Brilliant Green, the 
relaxation times were independent of wavelength. 

The theoretical development of relaxation involving large-amplitude motion in the 
absence of an activation barrier has lagged behind the experimental research. For a 
long time, the calculations of Forster and Hoffmann were the only quantitative 
calculations that were available. Earlier Oster and Nishijima (1956) considered non- 
radiative relaxation in TPM dyes as a rotational relaxation in the absence of a barrier 
in which the electronic energy is transferred to bath molecules simply via rotational 
motion. However, no quantitative treatment of this model or its generalization has yet 
been carried out. An extensive study of the viscosity dependence of relaxation in TPM 
dyes has been carried out by Cremers (1980) who solved a system of coupled 
Smoluchowski equations for the time dependence of the population in ground and 
excited states. We shall return to the discussion of various theories later. 

The kinetics of a chemical reaction in the absence an activation barrier poses 
interesting theoretical and experimental problems. In the absence of a high barrier, 
there is no natural separation of time-scales between the motion in the reactive region 
and in the rest of the potential surface. Therefore, a steady-state Kramers’ type 
calculation is no longer possible and one must solve for the full time-dependent 
probability distribution function of the system remaining on the excited state surface. If 
the decay of this probability function is not exponential, which is most often the case in 
the absence of a sizeable barrier, the definition of a rate constant is not obvious. 
Another important problem is the characterization of the source of decay from the 
excited surface. There are several scenarios that are possible. The most widely used 
model is that of Forster and Hoffmann (1971) who studied relaxation in the absence of a 
barrier by assuming the existence of a sink at a certain position in the excited-state 
surface and which gives rise to decay of excited-state population. The sink may be due 
to a displacement of the minimum of the excited-state surface with respect to the 
ground-state minimum in such a way that the energy gap between the two surfaces is a 
minimum at a certain point on the excited surface. Such a situation is described in figure 
6. Another model was proposed earlier by Oster and Nishijima (1956) in which the 
relaxation of the excited state was assumed to take place by a rotational diffusion 

Figure 6. A typical potential surface which can give rise to radiationless relaxation without the 
intervention of an activation barrier. 
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22 B. Bagchi 

process. As pointed out by Sundstrom and Gillbro (1984 c), the excited-state surface in 
the Oster-Nishijima model is perfectly flat along the reaction coordinate. However, no 
quantitative calculation has yet been carried out on this model. In the following, we 
briefly discuss the recent reformulation by Bagchi et al. (1983a) of the Forster- 
Hoffmann model and compare the predictions of their calculations with the available 
experimental results. 

Bagchi et al. (1983 a) considered a one-dimensional model for the reactive motion 
on the excited surface. The radiationless relaxation is represented by a coordinate- 
dependent sink which gives rise to decay in excited-state population. The motion along 
the potential surface is governed by the force from the potential (approximated as 
harmonic) and the viscous drag of the solvent. The initial excitation puts the molecule 
at certain position on the excited surface (position A in figure 6). The subsequent 
relaxation of the probability distribution function P(x, t )  for staying on the excited 
surface may be modelled by a modified Smoluchowski equation of the following form 

where o is the frequency of the (assumed) harmonic surface, 5 is the relevant friction co- 
efficient, p is the reduced mass of the reactive motion and T the temperature. k,, is the 
magnitude of the radiationless rate at the origin (where S(x) is chosen to be unity) and k, 
is the radiative rate constant independent of position. 

It is obvious from (26) that the form of the sink function S(x) will play an important 
role in the formulation of Bagchi et al. The precise form of S(x) is, however, very difficult 
to obtain. It would depend on the details of the forms of the ground and the excited- 
state potential surfaces, the couplings between them, and also on different channels of 
non-radiative relaxations. In order to investigate the effects of the sink functions S(x), 
Bagchi et al. (1983) studied three different models for S(x). 

(a) The sink is a pinhole at the origin. This mimics the situation where there is no 
radiationless transition from anywhere except the origin where the energy gap 
between the two surfaces may be a minimum and so the decay is very fast. This 
model may also be relevant to those situations where there is a ‘funnel’ in some 
region of the potential surface. 

(b) S(x) is a Gaussian function with a maximum at the origin. This is actually quite 
realistic because the energy difference between two harmonic surfaces in a 
quadratic function and so an exponential energy-gap law predicts a shifted 
Gaussian probability distribution between two surfaces. 

(c) S(x) is a Lorentzian function with the transition probability maximum at the 
origin. 

Let us now briefly comment on the relation of the Forster-Hoffmann model with 
that of Bagchi et al. These two models are similar in spirit. But Forster and Hoffmann 
(1971) chose a quadratic form for S(x) which is entirely unreasonable since it predicts an 
increase in the rate even when the gap between the ground and the excited surfaces 
increases. They also assume thqt all the molecules on the excited surface follow an 
auevage relaxation pathway rather than allowing for a random distribution of motions 
on the excited surface. The Forster-Hofhann model gives a prediction for the viscosity 
dependence of the quantum yield (4 f~q2 /3 )  which is in accord with experiments. 
However, this agreement is somewhat fortuitous in view of the fact that the time- 
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lsomerization dynamics in solution 23 

dependence of the fluorescence decay given by the model is exp (- at3), which has not 
been observed experimentally. 

Next we briefly discuss the solutions of equation (26) for two choices of the sink 
function S(x): the pinhole sink and the Gaussian sink. For the pinhole sink, once the 
solute particle arrives at the origin (point B in figure 6), it decays with unit probability. 
Mathematically this corresponds to the well known problem of an absorbing barrier at 
the origin and the solution for P,(t), the probability of the particle being on the excited 
surface after time t, can be easily obtained by the method of images (Montroll and West 
1979) 

L 
P,(t)=-exp (-k,t)erf (Z(t)) 

Jn 
where erf (a] is the error function defined by 

erf {a> = dq exp (- q') (28) s: 
and 

Z(t)=lxolexp(-Bt)[2A{1 -e~p(-2Bt)}/B]-~/~ (29) 
with 

c 4 
Since the error function has the following series expansion 

m (Z(t))Zn+ 
erf(Z(t))= C (-1)" 

n = O  n!(2n + I)! 
(28) predicts a multi-exponential decay for P,(t), except for sufficiently long times when 
the decay becomes single exponential. Since B is inversely proportional to viscosity 
(equation (30)), the decay of P,(t) is governed by t/r. 

Next we briefly discuss the results for the Gaussian sink. Bagchi et al. chose the sink 
function in the following form 

S(x) = exp (- x'/a2) (32) 
where a is the measure of the width of the sink function centred around the minimum of 
the excited-state potential surface. For this case, it has not been possible to solve the (26) 
analytically and it has to be solved numerically by a series expansion. The resulting 
expressions are complicated. Here we briefly summarize the results of the calculations 
of Bagchi et al. (1983). 

(a) For the Gaussian sink, the viscosity dependence of fluorescence quantum yield 
can be fitted to a form 

4f = A?" (33) 
with ct in the range 0.5 5 a 5 08. Figure 7 illustrates a representative calculation. 
The slope of the plot of 4f versus lnq in the lower viscosity range is -0.64 for 
the parameters chosen. The slope increases in the very low viscosity range 
(q  1: 1 cp) and decreases in the high-viscosity range (q N 10 poise) where the 
graph becomes flatter. In fact, a careful analysis of the data shows that the slope 
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-4  - 
3 2 1 0  1 . 2  3 

‘“7 
Figure 7. Dependence of fluorescence quantum yield (4J on viscosity (q) predicted by the 

theory of Bagchi et al. for Gaussian sink. The values of the parameters are: a=0.01, 
x,=O.l, k,,= 1-0 x lo”, k,= 1-0 x lo9, w= 1 x Viscosity (q) is in poise. 

Time (psecl 

in figure 7 except k ,  =O. The values of viscosities (in poise) are indicated on the graph. 
Figure 8. The decay of excited-state population for a Gaussian sink. Parameters are the same as 

of the plot rbt. versus In? always changes with viscosity and it may not be 
meaningful to consider the exponent CI in (33) as a constant independent of 
viscosity. If we set k, =O to study only the non-radiative decay, we find CI N 1 at 
large viscosities. So, the saturation mostly arises from competition between the 
radiative and the non-radiative modes of decay. 

(b) The decay behaviour of P,(t) is strongly dependent on viscosity. The decay is 
multi-exponential at all viscosities except in the limit q-+O where the 
Smoluchowski equation description is unreliable. Figure 8 describes the 
behaviour of the decay curve for several values of the viscosity. 

(c) The isoviscous temperature dependence of the rate is weak. The theory predicts 
a cross-over from a small ‘negative’ activation energy at small viscosity to a 
positive activation energy at larger viscosities. This interesting cross-over 
behaviour arises from the competition between the non-radiative relaxation 
and the oscillatory motion in the potential well. 
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( d )  The decay function P,(t) depends on the wavelength of excitation because light 
of different wavelengths excites the molecule to different positions on the 
excited surface. The dependence of the rate constant of non-radiative decay on 
excitation wavelength, however, is non-trivial. At very low viscosity, the rate 
constant is independent of excitation wavelength. 

Recently, Sundstrom and Gillbro (1984 b) carried out an extensive experimental 
study of solvent effects on TPM photophysics. For lower alcohols (Cl-C4), the 
relaxation of the excited state occurs without the intervention of an activation barrier. 
Sundstrom and Gillbro compared their results with the theory of Bagchi et al. (1983) 
and found disagreements on several major points. These experiments reveal that the ' 
temperature dependence of relaxation, especially the cross-over from small 'negative' 
activation energy to positive activation energy with viscosity, is a solvent-induced effect 
and is not an intrinsic property of the molecular potential surface as suggested by 
Bagchi et al. The main conclusion of Sundstrom and Gillbro (1984b) is that the 
relaxation rate has an intricate solvent dependence and cannot be described by a simple 
stochastic theory like that of Bagchi et al. (1983). The relaxation kinetics of TPM 
molecules in alcohol solutions remains a challenging problem to theoreticians and 
experimentalists alike and future studies on these systems would be worthwhile. 

The theoretical analysis of Bagchi, Fleming and Oxtoby is based on the 
Smoluchowski equation (26). Their results, therefore, are not applicable to very low 
viscosities where inertial effects become important and one must consider the full phase 
space Fokker-Planck equation (Chandrasekhar 1943). However, the solution of this 
equation is very difficult to obtain analytically. Therefore, Bagchi et al. (1983 b) solved 
the Fokker-Plank equation with a Gaussian sink term by generating stochastic 
trajectories. The main conclusion of their calculations is that the rate constant for 
population decay is a non-monotonic function of solvent friction, as illustrated in figure 
9. The value of the rate constant in the q+O limit is more than an order of magnitude 
lower than the prediction of the Smoluchowski equation. The Smoluchowski equation 
description is, however, reliable over virtually the entire experimentally relevant range 
of viscosity. 

-------- _ _ _ _ _ _ _ - _ _  - 

- 

- 

- 

-- 

.- 

I I I I I I I I  

P'w 
Figure 9. The rate constants of excited state population decay from a Gaussian sink plotted 

against the friction parameter p( = [/p). The solid line is the result from the Fokker-Planck 
trajectory calculations. The Smoluchowski equation result is shown by the dashed line. 
The analytical estimate for Fokker-Planck description in the [-to limit is shown by an 
arrow. 
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26 B. Bagchi 

Sundstrom and Gillbro (1984~) also carried out an experimental study of the 
dynamics of isomerization of trans-stilbene in n-alcohols at low viscosities. The 
activation energy Eo for non-radiative decay from the excited surface is very small, 
close to zero. The decay curve was found to be exponential. The time constant z,, of 
decay has a linear dependence on viscosity for small values of viscosity, but dependence 
becomes weaker as q is increased. Bagchi (1985) analysed these experimental results 
and suggested that they are in good agreement with the theory of Bagchi et al. (1983). 
From the experimental results, he obtained approximate estimates of the frequency o 
of the excited surface (assumed harmonic) and of the width a of the sink function S(x), 
assumed Gaussian (equation (32)). The values are: o= 1.3 x 10l2 s-' and a=0.07A. 
The value of the frequency is rather low which may be due to the poor estimate of the 
frictional force provided by the hydrodynamic expression used to relate 5 to q. The 
value of the sink parameter a predicts a narrow sink function which means that the 
non-radiative decay occurs only from a small region in the excited surface. Further 
experimental and theoretical work is necessary to verify these predictions. 

6. Solvent effects on reaction potential surface 
We mentioned in the introduction that the potential energy surface of a reaction 

may be profoundly affected by the solvent. For isomerization reactions in solution, this 
effect is most dramatically revealed in those reactions which take place in the optically 
excited state of the isomerizing molecule. This effect is most easily studied by changing 
the nature of the solvent. The change in the magnitude of the isoviscous activation 
energy serves as a good measure of the solvent effects on the potential energy surface. 
There are several well known isomerization reactions where the isoviscous activation 
energy changes by several factors in changing the solvent. For example, the activation 
energy of trans-stilbene in normal alkanes is larger by more than an order of magnitude 
than the same in n-alcohols (Sundstrom and Gillbro 1984b). Several other examples 
can be obtained from table 2. 

Clearly, a quantitative understanding of the solvent effects on the reaction energy 
surface is a formidable problem. A chemical reaction in solution is a strongly coupled 
many-body problem and one must consider not only the coupling between the reactive 
mode and the solvent molecules but also the couplings between the reactive mode and 
the non-reactive modes of the reacting molecule; the latter may also be solvent 
dependent. Thus a first-principles theoretical calculation of solvent effects on the 
potential surface is prohibitively difficult. The traditional method of including the 
solvent-induced effects is to write the rate in the following form 

k = A(q)  exp (ASt /kB)  exp (- A H f / k , T )  (34) 

with 

ASs Entropy of activation of the reaction, 
A H f  Enthalpy of activation, 
A(q) Viscosity dependent prefactor, assumed to be given by the Grote-Hynes 

formula (16) 

The solvent effects on potential surface can be studied by changing the solvent while 
keeping the viscosity of the solvents the same. This leaves the viscosity dependence of 
A(q) in (34) unchanged while ASf and A H f  may change. We note that A(?) also depends 
on solute-solvent interactions because the frequency parameters oR and wb depend on 
potential energy surface. For many purposes AH1 is well approximated by E,, the 
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Isomerization dynamics in solution 27 

activation energy of the reaction, because the contribution from the pressure volume 
term, P A V ,  is small. If we write E ,  in the form 

Eo=E,+AEso1"ent (35)  
where Em is the intrinsic, molecular, barrier height and AESolvent is the solvent 
contribution, then the contributions from the solute-solvent interactions are contained 
in AEsolvent. A similar decomposition can be done for A S .  

Since the molecular arrangement is different in the activated complex state from 
that in the reactant, such molecular properties as dipole moment, and polarizability 
will also be different in these two states. So, the solute-solvent interactions will 
definitely be different in the two states, leading to a non-zero contribution of AEs,l,e,t to 
E,. Courtney and Fleming (1985) pointed out that the sharp decrease in activation 
energy for isomerization of DPB in going from normal alkanes to alcohols can be 
rationalized if the intermediate twisted state (the activated complex) is stabilized in 
polar solvents. A schematic illustration of such solvent effects is depicted in figure 10. 
Note that both the barrier frequency a,, and the reactant-well frequency aR are also 
affected by such solvent effects. Another possible scenario is that the activated state is 
destabilized by the solvent, thus leading to a higher activation barrier. 

The difference in solute-solvent interactions can also affect the entropic contri- 
bution, A S ,  to the rate constant. In particular, the activated state may have such a 
configuration as induces a local order (disorder) in the surrounding solvent, resulting in 
a negative (positive) entropy contribution to A S f .  Recent computer simulations of 
Statman and Robinson (1985) of cis-trans isomerization in a model system revealed a 
significant entropy contribution to the rate. These authors attributed the entropy 
contribution to the change of hydrodynamic volume on isomerization. 

The influence of a solvent on the energy and entropy of activation can be significant 
if the solvent is polar and if the dipole moment of the activated complex is significantly 
different from that of the reactant. Van der Zwan and Hynes (1982) have investigated 
these polar solvent effects on solution phase reactions. 

Ladanyi and Evans (1983) have investigated the importance of solute-solvent 
interactions on the potential energy surface of trans to cis isomerization of stilbene in n- 
alkanes. They calculated the potential of mean force experienced by the isomerizing 
molecule along the reaction coordinate by using the theory of Chandler and Pratt 
(1976, 1977) who related the potential of mean force to cavity distribution function. 
Ladanyi and Evans concluded that for isomerization of trans-stilbene in n-alkanes, the 
solvent influence on the reaction potential surface is negligible. 

For many chemical reactions in the liquid phase, an interesting linear relationship 
between the entropy of activation and the enthalpy activation has been observed (Bell 
1937, Eyring and Laidler 1940). This linear relationship is usually written in the form 

TAS = aAH$ + p (36) 
with 1 > a> 0 and p > 0. Such a relationship has not yet been reported for isomerization 
reactions in solution. It is an interesting problem to explore. 

Figure 10. A schematic representation of a probable solvent effect on the reaction potential 
surface. 
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7. Non-equilibrium effects in isomerization dynamics 
The discussion of the solvent effects on the reaction potential surface in the last 

section is based on the assumption that the solvent molecules are in equilibrium with the 
reacting system at all times during the reaction. This allows one to describe the solvent 
effects in terms of the energy and the entropy of activation which are the differences 
between the energy and the entropy of the activated complex and the reactant, both in 
equilibrium with the solvent. The dynamical effects of the solvent then enter only 
through the collisional term, the friction parameter c, which at high viscosity hinders 
barrier crossing by forcing recrossing of the particle back into the reactant region. 
However, for reactions involving polar or ionic groups in a polar solvent, there is some 
degree of non-equilibrium solvation in the transition state and its neighbourhood. This 
is because for a fast reaction, the solvent molecules will not be able to rearrange 
sufficiently rapidly to follow their equilibrium path to the reactive motion. In such a 
situation, it will be erroneous to estimate A S  and AHx from the solvation values of 
these quantities for the reactant and the transition state. In addition, qualitatively new 
effects can arise from the non-equilibrium solvation dynamics (Bagchi 1986). 

Recently, Van der Zwan and Hynes (1983, 1984) investigated a simple model for 
dipole isomerization in polar solvents. In this model the reaction takes place via 
rotation of two inner reactive dipoles (RDs) by passage over a barrier. The RDs are in 
turn coupled to two outer solvent dipoles (SDs) by dipolar interactions. The SDs are 
coupled with the remainder of the solvent by simple frictional damping forces. Van der 
Zwan and Hynes (1983,1984) carried out a full dynamical treatment of this problem at 
the generalized Langevin equation level. Their treatment reveals several interesting 
solvation regimes where the non-equilibrium effects were important and where the rate 
constant differs considerably from the traditional transition state theory result. One 
interesting new result of this work is that the reaction coordinate is determined by the 
solvent response function at the reactive frequency Ar. 

The above work of Van der Zwan and Hynes constitutes perhaps the first attempt 
towards a quantitative theory of non-equilibrium solvation effects on isomerization 
dynamics in solution. Experimental confirmation of the different predictions of this 
theory is, however, difficult to obtain because there are many competing contributions 
to rate which may mask the subtle effects predicted by the theory. Further experimental 
and theoretical work on this interesting problem are needed to understand the non- 
equilibrium effects. 

8. Computer simulations 
Computer simulations have played a key role in our understanding of the dynamics 

of the liquid state (Hansen and McDonald 1976). However, it is only recently (Statman 
and Robinson 1985) that a full molecular dynamics calculation of an isomerization 
reaction has been carried out, although several interesting stochastic trajectory 
calculations were carried out earlier to test the validity of the rate theories 
(Montgomery et al. 1979,1980). The advantage of a full molecular dynamics simulation 
of a ‘realistic’ isomerization reaction is manyfold. Firstly, it allows the calculation of the 
rate for a reaction where the potential parameters are known uniquely. Secondly, it 
allows a systematic variation of the ‘experimental’ conditions which is often impossible 
in real experiments. Thirdly, in case of a disagreement between theory and experiment, 
it is often possible to pinpoint the cause by analysing the simulation data. 

Recently, Statman and Robinson (1985) simulated the isomerization dynamics of a 
model reaction. In this work, the isomerizing ‘molecule’ is made up of four Lennard- 
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Jones atoms bound together by holomonic constraints. The liquid is made up of 50 L-J 
atoms which interact with the atoms of the reacting ‘molecule’ via identical potential. 
The isomerization barrier V(8) between the end atoms is defined by 

V(U) = Vo(sin2 O + 4q sin2 V20) (37) 

where 8 is the dihedral angle and q is a disymmetry parameter. In the simulation, the 
model reaction was confined to one dimension by allowing intramolecular vibration 
only along the riaction coordinate 8. Statman and Robinson found that the friction 
along the reaction coordinate can be a factor of two less than that for the bulk solvent. 
Another important result of this simulation is that the entropy of activation makes a 
non-trivial contribution to the rate constant. In this case, the entropy contribution 
seems to arise from a change of hydrodynamic volume upon isomerization. The 
modification due to non-Markovian effects was small because the viscosity of the 
solvent was in the intermediate regime. 

The simulation results of Statman and Robinson (1985) indicate that computer 
simulations can play a very important role in elucidating the role of solvent on the 
isomerization dynamics. Further work on more realistic systems will certainly be worth 
while. 

9. Conclusions 
It is clear from the above review that despite considerable advances in our 

understanding of the dynamics of isomerization reactions in solution, there are still 
many questions that are far from understood. In many respects we have just begun to 
isolate the fundamental problems that must be solved to achieve a satisfactory 
understanding of these complicated reactions. In the following we discuss some specific 
problems for future considerations. 

(a) Effects of solute-solvent interactions on reaction potential surface 
The importance of these effects is evident from the large change observed in the 

activation energy when the solvent is changed from an apolar solvent to a polar solvent. 
This implies that the polar properties, such as the dipole moment and the polarizability, 
play an important role in determining the potential surface along the reaction 
coordinate. The solvent effects are most dramatic for the excited state. It is obvious that 
the polar properties of the isomerizing molecules change along thereaction coordinate. 
However, not much is known about this dependence. Measurements of the wavelength 
dependence of the absorption and the fluorescence spectra in different solvent 
environments would be helpful to understand this influence of solvent. Theoretically, 
one needs to do self-consistent quantum chemical calculations for the potential surface 
of the molecule in the force field of the solvent. Such calculations have been carried out 
for simple systems (Tapia 1981). However, simple ab initio calculations are known to be 
unreliable for excited states. Further research on this problem would certainly be worth 
while. 

(b) Multi-dimensional nature of the reaction 
This is currently an active area of research. The treatments of Kramers and of 

Grote-Hynes are strictly one-dimensional. However, in real systems the reactive mode 
will be coupled to other non-reactive modes of motion of the molecule. If this coupling 
is small, then a one-dimensional model is reasonable. However, our knowledge of intra- 
mode couplings in large molecules is rather poor. If the coupling between the reactive 
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mode and non-reactive modes is strong, then qualitatively new effects can arise. One 
such effect is to introduce frequency dependence of friction even when the bath is 
Markovian (Carmeli and Nitzan 1984, Zwwadzki and Hynes 1985). 

The importance of the multi-dimensional nature of the potential surface in specific 
isomerization reactions is still an open problem. It is obviously difficult to ascertain the 
potential parameters for the non-reactive modes. Thus a quantitative, or even a semi- 
quantitative, evaluation of the influence of other modes on the rate of isomerization is 
difficult. At this stage, it is important to understand the couplings for the isolated 
molecule (e.g. by studies in supersonic jet expansions). These couplings will obviously 
change in solution, but they can serve as a starting point. Theoretical studies with 
realistic models for multi-dimensional modes are also necessary to understand this 
problem. 

(c) Frequency dependent ji-iction 
Since the hydrodynamic expression for the frequency dependence of friction may 

not be reliable for many cases, we need a reliable way to find the frequency dependent 
friction. Computer simulation studies can play an important role in this problem, but 
eventually we would like to have an analytic expression. 

( d )  Evaluation of potential parameters 
It is evident from our discussions in Sections 3 and 4 that we need accurate values of 

the potential parameters oR and ob in order to make a meaningful comparison between 
theory and experiment. So far the method has been to fit the experimental data to some 
particular theoretical expression. This is obviously unsatisfactory. It is imperative that 
we find an alternative procedure to calculate these parameters. At present this is an 
open problem. 

(e) EfSects of non-equilibrium solvation dynamics 
For a fast isomerization reaction, the solvent degrees of freedom may lag behind the 

reactive motion. So, it may not be even justified to talk of equilibrium quantities, like 
entropy of activation, in this case. These effects may be important if the solvent is highly 
polar and the reactive motion involves large changes in the polar properties of the 
isomerizing molecule. 

cf> Entropy efects 
This may arise either from change in volume of the isomerizing molecule along the 

reaction coordinate, or from change in polarity, or from both. Computer simulations of 
Statman and Robinson (1985) indicate that such effects may play an important role in 
isomerization dynamics. Further theoretical and experimental, especially computer 
simulations, studies are necessary to understand this effect. 

Note added in proof 
Since the time of writing the above review (February to April 1985), a large amount 

of work has appeared in the literature on various aspects of isomerization dynamics in 
solution. In the following we briefly discuss some of the new results. 

Hicks et al. (1985) reported a study of the effects of solvent polarity on 
photochemical reactions in solution. They studied isomerization kinetics of dimethyl- 
aminobenzonitrile (DMABN) in polar solvents and observed that various properties 
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of the barrier region change significantly with polarity of the solvent. This study 
suggests that in some cases deviations from Kramers’ theory may be due to solvent- 
polarity-induced changes of the potential surface of the reaction. 

A computer simulation study of the non-Markovian activated rate processes has 
been carried out by Straub et al. (1986). These authors calculated the barrier crossing 
rate constants for a Brownian particle in a double-well potential experiencing a non- 
Markovian friction. Significant deviations from Grote-Hynes theory (Grote and 
Hynes 1980) was observed in a physically interesting regime. These authors attributed 
the deviations to the nonlinearities of the potential surface near the barrier region. The 
new results of Straub et al. (1986) indicate that the role of non-Markovian dynamics on 
isomerization reactions may have been overestimated in earlier studies (Bagchi and 
Oxtoby 1983, Rothenberger et al. 1983). 

Two papers have recently appeared on the dynamics of isomerization in the absence 
of a barrier. Ben-Amotz and Harris (1985) have studied the ground-state recovery, 
excited-state absorption and stimulated emission gain temporal profiles of crystal 
violet in low-viscosity normal alcohol solutions. Viscosity and wave length dependence 
of dynamics seem to be in agreement with the theory of Bagchi et al. (1983 a). Akesson 
et al. (1986) have studied several dye molecules which are characterized by barrierless 
isomerization in the excited state. The experiments were done in normal alcohol 
solutions by picosecond absorption spectroscopy. Except for 1,1’,4,4‘-cyanine dye, the 
observed behaviour was in agreement with theoretical predictions (Bagchi et al. 1983 a, 
Bagchi 1985). 

There has recently been considerable interest in the dynamics of photoisomeriz- 
ation in supersonic beams where excited-state isomerization is studied in ‘isolated 
molecule’ conditions (Syage et a]. 1982, Amirav and Jortner 1983, Majors et al. 1984, 
Scherer et al. 1984, Troe 1985). However, a detailed discussion of this subject‘is out of 
place here. 
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